当前位置: 首页 > 范文大全 > 公文范文 >

非饱和土本构模型中考虑含水率的应力—应变曲线的构建方法

时间:2022-03-06 10:18:32  浏览次数:

zoޛ)j馝]58ߐ文章编号:1674-4764(2015)04-0097-08

Abstract: Both water content and stress influence the deformation of unsaturated soils. Although the formula established by introducing water content to the unsaturated soil calculation model is empirical formula, it is extremely intuitive, and important to develop further. Based on the relation of test parameters of harden curve and water contents, and the relation of secant modulus of harden curve and water content, two approaches where water content is taken account of are established. Experiment is conducted to present the realizing processes of two methods, and the models are also verified. The results show that the results of the two methods both agree with test data very well. and the results of method one are smaller than those of method two.

Key words: The stress-strain-water contents relationship;curve;method

非飽和土的变形除受应力影响外,还与土中含水率及其变化有关[1-3]。含水率变化对应力和应变的影响是非饱和土研究的一个重要问题。吸力和含水率作为研究这一问题时可供选择的两种物理量。其中,吸力是一种应力,可以直接且方便地利用现有的模型假定,将其引入各种模型中,这样的作法也更严格,如著名的Bishop有效应力强度公式[4]和Fredlund的双应力变量强度公式[5]等,都含有吸力项。但是,由于吸力获取的困难性,限制了引入吸力的非饱和土研究成果被广泛地实际运用。相对而言,土体含水率更容易获得。在含水率与强度的关系研究方面,学者们已进行了大量工作。 Fredlund等[6]研究了土的抗剪强度随含水率变化规律。龚壁卫等[7]研究了含水率对非饱和击实膨胀土总应力强度的影响。刘艳等[8]在已有研究成果的基础上建立了水力-力学耦合的非饱和土本构模型。 王晓亮等[9]研究了雨水渗流对非饱和土土压力的影响,得到了在降雨条件下考虑中主应力的非饱和土抗剪强度公式。刘东燕等[10]研究了在土体含水率发生变化时基质吸力对路基非饱和土抗剪强度的影响,并得到抗剪强度峰值。汤连生等[11-13]提出了湿吸力的概念,并对非饱和土的湿吸力与含水率的定量关系进行了研究,再一次论证了非饱和土的强度随含水率的增加先增大后减小的事实。 骆以道[14]分析了含水状态对压实土抗剪强度的影响机制,研究含水状态变化对压实土抗剪强度影响。熊乘仁等[15]及邢鲜丽等[16]分别探讨了重塑非饱和粘土及黄土抗剪强度参数与饱和度的关系。凌华等[17-18]研究了非饱和土强度和变形随含水率的变化规律并建立相关公式。陈存礼等[19]对不同初始吸力非饱和原状黄土在常含水率下吸力和力学特性关系开展研究。在非饱和土计算模型中引入含水率,虽然建立的往往是经验公式,但非常直观,易于接受,作为一种近似而实用的处理方法值得深入研究和进一步发展[2]。

本文注重探讨构建考虑含水率的应力-应变关系曲线的基本方法,结合具体试验,展示方法的实现过程,并对构建的关系曲线进行检验。

图7中黑色米字符表示试验数据。为了便于比较试验数据与计算数据的关系,将计算曲面设置为半透明。由图7可见,计算曲面和试验数据连线的变化趋势基本一致,并且试验数据点分布在计算曲面两侧较小的范围内,二者能够较好地吻合,说明方法二获得的关系曲线具有合理性。

2.3 2种方法的对比

为了表达方便,将方法1的计算值记作z1,将方法2的计算值记作z2。对方法1和方法2进行对比时,只需考察z1与z2的比值关系,即z1/ z2的值。当比值等于1时,二者相等;当比值大于1时,说明方法1的计算值比方法2要大;反之,说明方法1的计算值比方法2要小。z1/ z2与主应变和含水率的关系见图8,作z1/ z2的等高线图见图9。

由图8、图9可见,2种方法的计算值的比值主要集中在1.0附近。仅当应变在2%以内,含水率在14%~32%这样的较小区域内二者的比值小于0.85。说明这2种方法的计算值很接近。若对2种方法的计算值进行细致对比的话,方法1的计算值要比方法2的计算值稍小。

3 结 论

分别从加工硬化曲线的试验参数与含水率的关系和加工硬化曲线的割线模量与含水率的关系2个不同的角度出发,提出了2种不同的构建考虑含水率的应力-应变关系曲线的方法。结合具体试验展示了2种方法的实现过程,并对关系曲线的合理性进行检验,检验的结果表明2种方法获取的关系曲线均能于试验值较好吻合。最后,就试验结果对2种方法获取的关系曲线进行了比较,比较的结果表明2种方法的计算值很接近。在试验中若对两种方法的计算值进行细致对比的话,方法1的计算值要比方法2的计算值稍小。

参考文献:

[1]孙德安.饱和度对非饱和土力学性质的影响[J].岩土力学,2009,30(Sup2):13-16.

Sun D A. Effect of saturation degree on mechanical behaviours of unsaturated soils[J].Rock and Soil Mechanics, 2009,30(Sup2):13-16.(in Chinese)

[2]殷宗泽,周建,赵仲辉,等.非饱和土本构关系及变形计算[J].岩土工程学报,2009,30(Sup2):13-16.

Yin Z Z, Zhou J, Zhao Z H,et al. Constitutive relations and deformation calculation for unsaturated soils[J].Chinese Journal of Geotechnical Engineering,2009,30(Sup2):13-16.(in Chinese)

[3]Thu T M,Rahardjo H,Leong E C.Effects of hysteresis on shear strength envelopes from constant water content and consolidated drained triaxial tests[C]// proceedings of the fourth international conference on unsaturated soils. Arizona, USA: [S. N.], 2006:1212-1222.

[4]Bishop A W, Alpan I, Blight G E, et al. Factors controlling the shear-strength of partly saturated cohesive soils[C]// ASCE Conference on Shear of Cohesive Soils.Boulder,CO:University of Colorado,1960:503-532.

[5]Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978,15(3):313-321.

[6]Fredlund D G, Xing A, Fredlund M D, et al. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1996,33(3):440-4

[7]龔壁卫.非饱和击实膨胀土总应力强度探讨[J].长江科学院院报,1998,15(3):19-22.

Gong B W.Discussion on shear strength of total stress of unsaturated compacted expansive soil [J].Journal of Yangtze River Scientific Research Institute,1998,15(3):19-22.(in Chinese)

[8]刘艳,韦昌富,房倩,等.非饱和土水-力本构模型及其隐式积分算法[J].岩土力学,2014,35(2):365-366.

Liu Y, Wei C F, Fang Q, et al.Implicit integration algorithm of a hydro-mechanical coupling constitutive model for unsaturated soils [J].Rock and Soil Mechanics, 2014,35(2):365-366.(in Chinese)

[9]王晓亮,李光范,杜娟,等.降雨和蒸发对非饱和土土压力的影响[J].应用力学学报,2014,31(3):423-427.

Wang X L , Li G F, Du J, et al.Effects of rainfall infiltration and evaporation to the unsaturated soil pressure [J].Chinese Journal of Applied Mechanics, 2014,31(3):423-427.(in Chinese)

[10]刘东燕,郑志明,侯龙,等. 路基非饱和土抗剪强度的吸力效应[J]. 土木建筑与环境工程,2012,34(4):1-5.

Liu D Y, Zheng Z M, Hou L, et al.Matric suction effect on shear strength of roadbed unsaturated soil [J].Journal of Civil, Architectural & Environmental Engineering , 2012,34(4):1-5.(in Chinese)

[11]张鹏程,汤连生,邓钟尉,等. 非饱和土湿吸力与含水率的定量关系研究[J]. 岩土工程学报,2012,34(8):1453-1457.

Zhang P C, Tan L S, Deng Z W , et al.Research of quantitative relations of matric suction with water content and dry density [J].Chinese Journal of Geotechnical Engineering , 2012,34(8):1453-1457.(in Chinese)

[12]张鹏程,汤连生,姜力群,等. 非基质吸力与含水量及干密度定量关系研究[J]. 岩石力学与工程学报,2013,32(1):2793-2797.

Zhang P C, Tan L S, Jiang L Q, et al.Research of quantitative relations of matric suction with water content and dry density [J].Chinese Journal of Rock Mechanics and Engineering , 2013,32(1):2793-2797.(in Chinese)

[13]汤连生,王思敬. 非湿吸力及非饱和土的有效应力原理探讨[J]. 岩土工程学报,2000,22(1):83-88.

Tan L S, Wang S J.Absorbed suction and principle of effective stress in unsaturated soils [J].Chinese Journal of Geotechnical Engineering, 2000,22(1):83-88.(in Chinese)

[14]骆以道.考虑饱和度的压实填土抗剪强度研究[J].岩土力学,2011,32(10):3143-3147.

Luo Y D. Research on shear strength of compacted soils considering saturation degree[J]. Rock and Soil Mechanics, 2011,32(10):3143-3147.(in Chinese)

[15]熊乘仁,劉宝琛,张家生,等.重塑非饱和粘土抗剪强度参数与饱和度的关系研究[J].岩土力学,2003,24(Sup2):195-198.

Xiong B R, Liu B C, Zhang J S, et al. Study on relation of shear strength parameters with saturation of remolded unsaturated cohesive soil [J]. Rock and Soil Mechanics, 2003,24(Sup2):195-198.(in Chinese)

[16]邢鲜丽,李同录,李萍,等. 黄土抗剪强度与含水率的变化规律[J].水文地质与工程地质,2014,41(3):53-59.

Xing X L, Li T L, Li P,et al. Variation regularities of loess shear strength with the moisture content [J]. Hydrogeology & Engineeing Geology, 2014,41(3):53-59.(in Chinese)

[17]凌华,殷宗泽.非饱和土强度随含水量的变化[J].岩石力学与工程学报,2007,25(7):1499-1503.

Ling H, Yin Z Z.Variation of unsaturated soil strength with water contents[J].Chinese Journal of Rock Mechanics and Engineering,2007,25(7):1499-1503.(in Chinese)

[18]凌华,殷宗泽,蔡正银.非饱和土的应力-含水率-应变关系试验研究[J].岩土力学,2008,29(3):651-655.

Ling H, Yin Z Z, Cai Z Y.Experimental study on stress-water content-Strain relationship of unsaturated soil [J].Rock and Soil Mechanics, 2008,29(3):651-655.(in Chinese)

[19]陈存礼,张登飞,董玉柱,等. 常含水率三轴条件下非饱和原状黄土的吸力和力学特性[J]. 岩土工程学报,2014,36(7):1195-1202.

Chen C L, Zhang D F, Dong Y Z, et al.Suction and mechanical behaviours of unsaturated intact loess from constant water content triaxial tests [J].Chinese Journal of Geotechnical Engineering , 2014,41(3):53-59.(in Chinese)

(编辑 胡 玲)

推荐访问: 应力 应变 饱和 曲线 构建