当前位置: 首页 > 范文大全 > 公文范文 >

数控机床日常维护与常用判断方法研究

时间:2022-03-03 08:06:17  浏览次数:

【摘 要】数控机床故障的诊断是数控机床维修的关键。一般来说,随着故障类型的不同,采取的故障诊断的方法也就不同。本文从数控机床故障诊断的内容、原则、方法等方面入手来简要阐述一下数控机床故障的诊断方法。

【关键词】数控机床;维护;故障;诊断

0.前言

数控机床是一种新型的自动化机床,采用计算机技术,是机电一体化产品。由于其加工精度高、柔性好、效率高、可以加工形状复杂的零件,所以得到了广泛应用。但数控机床技术先进,构成复杂,其出现的问题诊断和排除的难度都比较大。

随着数控机床的普及,对其有效利用率的要求越来越高,一方面要求可靠性高,一方面当机床出现故障后要尽快排除,所以要求其维修人员要有扎实的理论基础和丰富的实际经验。在此浅谈一下有关数控机床的维护以及一些故障的常用诊断方法。

1.数控机床的维护

对于数控机床来说,合理的日常维护措施,可以有效的预防和降低数控机床的故障发生几率。

首先,针对每一台机床的具体性能和加工对象制定操作规程建立工作、故障、维修档案是很重要的。包括保养内容以及功能器件和元件的保养周期。

其次,在一般的工作车间的空气中都含有油雾、灰尘甚至金属粉末之类的污染物,一旦他们落在数控系统内的印制线路或电子器件上,很容易引起元器件之间绝缘电阻下降,甚至倒是元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。

另外,对数控系统的电网电压要实行时时监控,一旦发现超出正常的工作电压,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件的损坏。所以配电系统在设备不具备自动检测保护的情况下要有专人负责监视,以及尽量的改善配电系统的稳定作业。

当然很重要的一点是数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,要注意将电刷从直流电动机中取出来,以免由于化学腐蚀作用,是换向器表面腐蚀,造成换向性能受损,致使整台电动机损坏。这是非常严重也容易引起的故障。

2.故障诊断内容

(1)动作状态诊断:当机床电机带动负载时,观察运行状态,监视机床各动作部分,判定其不良的部位。诊断部位是ATC、APC和机床主轴。

(2)点检诊断:定期点检液压元件、气动元件和强电柜。

(3)操作诊断:监视操作错误和程序错误。

(4)数控系统故障自诊断:不同的数控系统虽然结构和性能有所区别,但在故障诊断上有它的共性。

3.故障诊断原则

(1)先外部后内部 数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查,尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。

(2)先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。在故障检修之前,首先注意排除机械性的故障,能提高诊断的效率。

(3)先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。在运行工况下,进行动态的观察、检验和测试,查找故障。而对破坏性故障,必须先排除危险后,方可通电。

(4)先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。

4.故障诊断的常用方法

4.1 直观检查

直观检查法它是维修人员最先使用的方法。在故障诊断时,首先要询问,向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析、判断过程中可能要多次询问;其次是仔细检查,根据故障诊断原则由外向内逐一进行观察检查。总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、润滑装置等)有无报警指示,局部特别要注意观察电路板的元器件及线路是否有烧伤、裂痕等现象、电路板上是否有短路、断路,芯片接触不良等现象,对于已维修过的电路板,更要注意有无缺件、错件及断线等情况;再次是触摸,在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、 各功率及信号导线(如伺服与电机接触器接线)的联接状况等来发现可能出现故障的原因。

4.2 仪器检查法

仪器检查法使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。例如:用万用表检查各电源情况,以及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有、无,用PLC 编程器查找PLC程序中的故障部位及原因等等。

4.3 功能程序测试法

功能程序测试法是将数控系统的G、M、S、T、F功能用编程法编成一个功能试验程序,并存储在相应的介质上。在故障诊断时运行这个程序,可快速判定故障发生的可能起因。功能程序测试法常应用于以下场合:

1)机床加工造成废品而一时无法确定是编程操作不当、还是由于数控系统故障引起的。

2)数控系统出现随机性故障。一时难以区别是外来干扰,还是系统稳定性差时。

3)闲置时间较长的数控机床在投入使用前或对数控机床进行定期检修时。

4.4 接口状态检查法

现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。这种检查方法要求维修人员既要熟悉本机床的接口信号,又要熟悉PLC编程器的应用。

4.5 参数检查法

数控系统、PLC及伺服驱动系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而随机床的长期运行所引起的机械或电气性能的变化会打破最初的匹配状态和最佳化状态。此类故障需要重新调整相关的一个或多个参数方可排除。这种方法对维修人员的要求是很高的,不仅要对具体系统主要参数十分了解,既知晓其地址熟悉其作用,而且要有较丰富的电气调试经验。

4.6诊断备件替换法

随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,在没有诊断备件的情况下可以采用相同或相容的模块对故障模块进行替换检查,对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作,尽最大可能缩短故障停机时间。

5.故障诊断实例

由于数控机床的驱动部分是强弱电一体的,且最容易发生问题。因而将此部分作简单介绍:驱动部分包括主轴驱动器和伺服驱动器,有电源模块和驱动模块两部分组成,电源模块是将三相交流电有变压器升压为高压直流,而驱动部分实际上是个逆变换,将高压支流转换为三相交流,并驱动伺服电机,完成个伺服轴的运动和主轴的运转。因此这部分出故障率最高。以CJK6136数控机床和802S数控系统的故障为例,简单分析控制电路和机械传动接口的故障维修。

如数控机床在加工过程中,主轴有时能回参考点有时不能。在数控操作面板上,主轴转速显示时有时无,主轴运转正常。分析发生的故障原因得该机床采用变频调速,其转速信号是由编码器提供,所以可排除编码器损坏的可能,否则根本无法传递转速信号。只能是编码器与其连接单元发生问题。两方面考虑,一是和数控系统连接的ECU连接可能松动,二是和主轴的机械连接可能出现问题。因此可以开始解决问题了。首先检查编码器和ECU的连接。若问题不存在,就拆下编码器检查主传动和编码器的连接键是否脱离键槽。如果发现是这个问题,修复且重新安装问题便解决了。

数控机床故障产生的原因是各种各样的,有机械、数控系统、传感元件、驱动元件、强电部分、线路连接等问题。在检修过程中,要分析故障产生的原因与范围,然后逐一排除,直到找出故障,切勿盲目乱动。否则不仅不能解决问题,还可能使故障范围扩大。总之,面对数控机床故障与维修问题时,首先要以、提前防患,不能在机床出问题后才去解决,必须做好日常维护和机床本身结构及工作原理的了解,这样才能迅速发现解决问题。

【参考文献】

[1]韩鸿鸾.数控机床维修实例[M].中国电力出版社.2006.

[2]毕敏杰.机床数控技术[M].北京:机械工业出版社.1996.

推荐访问: 数控机床 日常维护 判断 常用 方法