当前位置: 首页 > 范文大全 > 公文范文 >

化学刺激技术在增强型地热系统中的应用:理论、实践与展望

时间:2022-04-03 08:25:01  浏览次数:

zoޛ)j馑HIjwtgR^A!^')eJ6总结,在此基础上提出了化学刺激剂在增强型地热系统中的研究建议及应用展望,以期为中国未来EGS的科学研究和项目实施提供参考。

关键词:增强型地热系统;化学刺激;储层改造;土酸;缓速酸;螯合剂;干热岩;水力压裂

中图分类号:P314.2;TK521文献标志码:A

Application of Chemical Stimulation Technology in Enhanced Geothermal System: Theory, Practice and Expectation

LIU Mingliang1, ZHUANG Yaqin2, ZHOU Chao2, ZHU Mingcheng3, ZHANG Canhai3,

ZHU Yongqiang4, TAN Long4, LUO Jin4, GUO Qinghai2

(1. Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China;

2. School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China;

3. Huanghe Hydropower Development Co., Ltd., State Power Investment Corporation, Xining 810008,

Qinghai, China; 4. Faculty of Engineering, China University of Geosciences, Wuhan 430074, Hubei, China)

Abstract: As a clean and renewable energy, hot dry rocks are the most potential part of exploiting and utilizing in the future, and the engineering technology of exploiting hot dry rock is called enhanced geothermal system. As a supplementary method of hydrofracture, chemical stimulation technology has the characteristics of low cost and risk, and plays a very important role in optimizing reservoir reform. Some related literatures at home and abroad about chemical stimulation technology in enhanced geothermal system (EGS) were reviewed, and the theoretical basis of chemical stimulation technology and several common chemical stimulants (conventional acid, retarded acid, chelating agent and CO2 chemical stimulants) were presented. In addition, the only EGS projects (Fenton Hill in America and Soultz in France) applying chemical stimulation technology in the world were introduced and summarized. On this basis, several suggests and expectations about chemical stimulation in EGS were also proposed, hoping to provide a reference for the scientific research and project implementation of EGS in China.

Key words: enhanced geothermal system; chemical stimulation; reservoir reform; mud acid; retarded acid; chelating agent; hot dry rock; hydrofracture

0引言

近年来,随着全球化石燃料总量的加速减少及其开发利用所带来的环境污染日益加剧,发展可再生能源的呼声日益高涨。地热能由于其具有清洁、可再生和分布广泛等特点,成为最具开发潜力的新型能源之一。目前,地热资源的开发大部分都是利用水热型地热资源进行发电。尽管地热发电的发展很快[1],但仅依靠开发传统的水热系统很难超越其他类型的新能源(如太阳能、风能)[2]。干热岩型地热系统作为地热能的另外一种类型,可以从中得到的能量约为存在于水热系统中可供利用能量的100~1 000倍[3]。据麻省理工学院(MIT)2006年报告,只要开发3~10 km深度段2%的干热岩资源储量,就将达到200×1018 EJ,是美国2005年全年能源消耗总量的2 800倍。2011年,中国科学院地质与地球物理研究所计算中国大陆地区3~10 km深度段干热岩型地热资源为2.09×107 EJ,如果按2%的可开采资源量计算,也达到4.2×105 EJ,是中国大陆2010年能源消耗总量的4 400倍[45]。由此可见,干热岩的开发是解决全球能源枯竭的必然趋势[6]。

推荐访问: 地热 展望 增强型 刺激 实践