当前位置: 首页 > 范文大全 > 公文范文 >

13个科学之谜

时间:2022-03-12 08:49:11  浏览次数:

zoޛ)jiiwӟiiiyM7M8^vii׽o}4m4]u߮u5u5ߝӝ|Z总结出了一个经验公式:如果将飞行器经过地球时的进入轨道角度、离开轨道角度及地球的旋转速度,同飞行器的额外加速联系起来,那么在进入和离开的轨道与地球赤道对称时,最小的额外增速就出现了。更奇怪的是,他在这个公式中引入了光速。这背后的物理机制究竟是什么呢?

从普遍接受的标准物理学中是找不到答案的,但一些科学家提出了多种新奇的解释,其中包括暗物质、相对论修正、地球引力场本身不平衡、某种惰性神秘物及光的本质等概念。在这中间,最没有争议的观点是,这种额外加速跟绑定到地球的暗物质有关。目前,安得森等人正在对这种观点作进一步的验证。

谜题六 杂交生命

如果你了解海鞘的基因组,你一定会大吃一惊。海鞘的一半基因的进化史简单明了,另一半也同样简单明了,但问题是这两半的进化史完全不同,海鞘看来并非安分地呆在脊索动物中间坐等进化(脊索动物的进化线条跟人类及其他脊椎动物是一样的)。实际上,它就像是一种远古脊索动物同海胆的祖先‘嫁接’的产物。

把两条泾渭分明的进化线条融合起来,按理说完全是胡搞。根据公认的生物学知识,“半人半兽”之类的杂交体注定会成为进化上的死结。然而,公认的知识在这里再一次出错。尽管大家都以为“杂交是坏的,纯粹的物种才是好的”,但事实却是,杂交在某种程度上就像是变异——大多数变异固然不好,可偶尔变异也是一种需要。变异究竟是好是坏,完全由自然选择所决定。

生物学家们正在达成一种共识,就是自然界的大部分生物并非是“纯洁”家族线条的产物,而是多条进化线条交织的结果。例如,基因指令能将毛毛虫变成与之形态截然不同的花蝴蝶,其中的道理或许就在于此。实际上,这类变形在海洋生物中尤其普遍,或许是因为受精过程发生在海洋这种开放式的大环境中,精于很容易被带往“错误的”(另一个物种的)卵子——如此众多的、千差万别的动物都把卵子留在同一片域等待受精,难免张冠李戴地“乱授精”,完全意想不到的后果便应运而生。

这方面的一个典型例子是一种海星。开始时,小海星体内甚至有一只更小的海星。最后,更小的海星游离出来,两只海星各奔前程,成为实实在在的两只海星。这样的“一变二”令科学家感到很惊讶。那么,像这样的生物杂交现象究竟有多普遍呢?至少有10%的植物种类可能是以某种方式杂交出来的。至于这种现象在更“高等”的物种中间的普遍程度如何,目前还不清楚。科学家承认,他们对杂交仍然所知甚少。

谜题七 海中杂音

1997年夏天,美国的一组水下测音器接收到一个奇隆的声音。在一分钟内,它的频率迅速上升,然后神秘消失。水下测音器是冷战时期的一种潜艇追踪仪,它在这年夏天多次接收到这一奇怪信号,但之后却再未听见。无人知道是谁制造了这个声音,现在它被称为“布拉普杂音”。

这并非人们首次听见海洋中的神秘声音。1997年5月,水下测音器还听到过一种“减速声”。在大约7分钟的过程中,它逐渐降低声调,就像飞机经过时的声音那洋。这个奇怪声音的来源至今仍不清楚,但似乎是来自南美洲西海岸某处。令人惊讶的是,在2000千米之外竟然能听到它。

在“布拉普杂音”之类的海洋怪声背后究竟是什么呢?“布拉普杂音”听起来像是动物的叫声,但又比任何鲸鱼的叫声大得多。如此来看,制造“布拉普杂音”的“海洋动物”应该比任何鲸鱼都大,或者说它们应该是效率极高的声音制造者。至于“减速声”的来源,现在最流行的解释是——它是南极冰山碎裂声。要真是这样的话,全球变暖可能进一步加剧了。

上述两个声音之谜只不过是沧海一粟。美国大气海洋局部署在大西洋、北冰洋、格陵兰海域、白令海和南极海域的水下测音器每年都接收到海洋中的各类神秘声音,加起来已有成百上千种。

谜题八 物质之谜

宇宙学理论认为,最初的大爆炸应该在宇宙中产生了同样数量的物质和反物质。如果真是这样,宇宙就应该在物质与反物质相遇的自发湮灭中消失无踪,也就是说宇宙应该一开始便结束了。可我们现在还能在这里思考这个矛盾的问题,这自然意味着上述湮灭场景一定出了什么问题。是什么问题呢?

在核加速器中进行的试验告诉我们,在早期宇宙中,每产生100亿个反质子,就应该有100亿加1个质子。这种微小的不平衡对其他粒子如电子来说也是一样的。那些额外的粒子最终累积成了我们今天所见的充满物质的宇宙。那究竟是什么原因造成了早期宇宙的这种不平衡呢?

简短的答案是“不知道”。一种可能的答案是,“缺失”的反物质正潜伏在宇宙附近的遥远地带。不过,这种可能性看来并不存在。一个较好的解释来自于“弱作用力”,它主宰着一些核过程,包括放射性β衰变。1964年,物理学家发现弱作用力在对付物质和反物质方面的力度并不对称,从而造成物理学上所称的“CP破缺”。这让一些粒子物理学家推测,物理学法则实际上是不平衡的。问题是,粒子物理学的标准模型指出,现有物理学法则的这么一点点不平衡,即一点点“CP破缺”是远远不够的。

解释早期宇宙中物质、反物质不平衡的其他观点,涉及到一种假想粒子——马约喇纳量子。物理学家认为,马约喇纳量子不等量地创造了中微子和反中微子,最终导致物质与反物质数量不对等。科学家希望,正在进行中的大型强子对撞机试验能够发现马约喇纳量子。要是这样的话,物质、反物质数量不平衡的谜底就可能揭晓。

谜题九 锂的问题

宇宙大爆炸理论还告诉了我们在大爆炸之后的5分钟里应该锻造出了哪些原子。现有的氢和氦的数量跟理论值非常吻合,宇宙学家据此声称宇宙大爆炸理论名副其实。然而,对第三种元素——锂来说,情况就不那么美妙了。

当我们统计恒星上包含的锂原子的数量时,发现实际的锂-7同位素的数量只是应有的1/3,而另一种同位素锂-6的数量却比应有的多了近1000倍。

如此看来,宇宙大爆炸理论就有些说不过去了。更严重的是,对恒星的更准确观测暗示,它们包含的锂-7比止匕前认为的还要少。也就是说,预测值与观测值之间的差距进一步拉大了。

究竟哪里出了问题呢?锂-6太多也许只是因为我们现有的计量方法精度不够。事实上,要想通过观察恒星发出的,光线来查明锂-6的数量是很困难的。而锂-7的短少也许源于恒星内部的毁灭性过程。对此,科学家目前尚未达成共识。还有人认为,锂-7的数量不足或许跟暗物质有关。果真如此吗?科学家也指望大型强子对撞机能给出答案。

谜题十 “魔幻”结果

挑战爱因斯坦理论的大有人在,不过大多最终都沦为笑谈。但有一个明显的例外,就连一些物理学泰斗也认为:要是爱因斯坦还活着的话,他也必须对此加以解释。

2005年,在加纳利群岛中的拉·帕尔马岛上,科学家运用“魔幻”伽马射线望远镜研究由马卡林501星系(距离地球5亿光年)中心黑洞释放的伽马射线爆发。他们发现,爆发产生的高能伽马射线到达望远镜的时间比低能伽马射线晚了4分钟。然而,光谱中的这两个部分应该是在同一时间发出的。

这种时间差会不会是由于高能辐射在太空中的传播速度要慢于低能辐射呢?如果真是这样,就违反了爱因斯坦狭义相对论的核心论点之一。根据狭义相对论,所有电磁辐射总是以相同的速度即光速在真空中穿行,辐射的能量与速度绝对无关。

问题究竟出在哪里呢?“魔幻”望远镜的观测结果暗示,狭义相对论只是对事物工作原理的近似描述,观测到的滞后或许是源于发生在时一空最基本尺度——普朗克尺度(10-35米)上的过程。果真如此的话,就意味着我们也许最终能找到一种方法来测试那些旨在把相对论和量子论结合成一种量子引力论的理论。

2008年,随着美国宇航局的“费米”伽马射线望远镜升空,上述问题进一步复杂化。“费米”观测到,从120亿光年外一个源头发出的高能光子到达“费米”的时间,竟然比同一源头发出的低能光子晚了20分钟。科学家希望“费米”能给出更多数据,让他们能最终排除那些“世俗”的解释,将我们引入就连爱因斯坦也惊奇的新的物理学领域。

谜题十一 隐蔽单级

电和磁就像同一枚硬币的两面。物理学家认为,电和磁之间应该有着高度的对称。那么,为什么我们看见了孤独的电荷比如电子和质子,却从来没看见过孤独的磁极——磁单极?

几乎可以肯定磁单极是存在的。例如,在物理学界广泛接受的“大统一理论”中,磁单极起着非常关键的作用。该理论暗示,四种自然力起源于一种超级力,这种超级力在宇宙大爆炸之前一直存在。但问题是,按照“大统一理论”,对于原子核中每1029个质子和中子来说,磁单极的数量竟不超过1个,否则现有的最灵敏的搜索至少应该能发现一个这样的磁单极。

看来我们自己是无法制造磁单极的,因为“大统一理论单极”被认为拥有很大的质量,而我们的粒子加速器是无力创造这样的磁单极的。尽管如此,物理学家仍然坚信磁单极的存在,只是我们还没有找到它们而已。早在20世纪30年代,英国物理学家保罗·狄拉克(1933年诺贝尔奖得主)就给出了一个很好的理由来让我们相信磁单极的存在。他说,磁单极的存在反过来又可以解释电子的存在。“狄拉克单极”可以是任倾量的。所以这样的磁单极完全有可能在我们的粒子加速器中出现,或者在上层大气中的宇宙射线碰撞的衰变产物中亮相。

科学家为了寻找磁单极已经进行了多次尝试,但都没有成功。这是否意味着我们应该就此放弃?许多物理学家认为不应该。事实上,磁单极的存在并不违背我们所有已知的物理学,这个事实表明磁单极几乎可以肯定是存在的,这也跟美国著名物理学家默里·盖尔曼提出的一个原则——“不被禁止就必然存在”不谋而合。总之,磁单极和量子力学完全吻合,也就是说,磁单极的确应该存在。

谜题十二 边缘噪声

尽管位于德国汉诺威的GEO600引力波探测器迄今仍未探测到任何引力波,但它有可能已经揭开了终极真相。

2008年,在位于美国伊利诺伊州巴达维亚的费米实验室,物理学家克雷格·霍根试图找到一种方法来测试一种理论:我们所看到的一切物理现实,都是来自于宇宙边缘的一种投射的结果。这就是所谓的“全息原理”。

根据全息原理,锁定在宇宙边缘的信息并非是平滑的,而是由“比特”构成的,每个比特所占据的区域都符合宇宙中最基本的量子距离,这便是普朗克尺度,约为10的负35次方米。显然,比特实在是太小。我们不可能看见单个的比特。然而,当这种信息投射进整个宇宙中时,每个比特都被放大,这就意味着我们或许能够看见它们在时空上的成像。

这种成像涉及的尺度还是太小,因此只有最敏感的仪器如引力波探测器才有可能探测得到。引力波探测器探测的实际上是时一空中的涟漪,这种涟漪是由暴烈的宇宙事件如两个黑洞相撞造成的。霍根研究出了这种时一空成像会在GE0600中怎样放大自己,并把研究结果传递给了汉诺威的研究者们。

一种奇异的巧合是,GE0600研究团队一直对这个探测器中的“噪声”感到迷惑不解。现在才发现,它跟霍根所预计的信号有着惊人相似的特点。如此看来,莫非这个噪声正是宇宙边缘信息投射的结果?不过,这个问题迄今仍无定论。2010年9月,GE06D0探测器将完成升级,灵敏度更高,也许到时候就会有肯定的答案。

谜题十三 反安慰剂

当西方人类学家首次听说巫医能发出死亡咒语后,他们很快便找到了理性的解释。例如,被诅咒者的家人常会认为,没有理由再把食物浪费在“活死人”身上。这就是许多被诅咒者的死亡原因——他们其实是被活活饿死的。

然而,其他一些案例则没这么容易解释。例如,20世纪70年代,医生曾诊断一名男子患有晚期肝癌,并告知他最多还能活几个月。这名患者果然在预计的时间内死亡,然而,尸检却显示,医生们搞错了——那肿瘤很小,而且根本就没有扩散。如此看来,医生的诊断成为该男子的死亡咒语。

尽管这其中的机制仍然是谜,但这类现象现在至少有了一个名字——“反安慰剂效应”。和安慰剂效应相对应,反安慰剂效应指此类案例:将某人置于负面心态之下,从而对其健康造成负面影响。例如,你告诉一个患者他将要经历的手术会很痛苦,那么这个患者在手术时可能就会感受到更多的痛苦。与此相似,在药物试验中,如果你对服用安慰剂组的人(他们不知道自己服用的是安慰剂)说,药物可能有一些副作用,那么他们很可能就会纷纷报告说自己感受到了这些副作用;反之,如果你不这么警告他们,他们很可能根本就不会报告所谓的副作用,毕竟他们服用的是虽然没有药效、但也没有副作用的安慰剂。

反安慰剂效应的负面作用不仅表现在心态上,也表现在肉体上。例如,由反安慰剂效直产生的压力可以对心脏造成持久的甚至致命的影响。科学家现在正加紧研究反安慰剂效应背后的确切机制,这样也许就能找到预防焦虑的办法。

推荐访问: 之谜 科学