当前位置: 首页 > 毕业论文 >

高中生物论文4篇(范文推荐)

时间:2023-10-12 19:00:35  浏览次数:

高中生物论文将作物栽培在除土壤以外的培养基上,叫无土栽培。无土栽培具有不占地或少占地、换茬快、环境清洁、产品无污染和生长好、品质优、色鲜味美等优点,为花卉蔬下面是小编为大家整理的高中生物论文4篇,供大家参考。

高中生物论文4篇

高中生物论文篇1

将作物栽培在除土壤以外的培养基上,叫无土栽培。无土栽培具有不占地或少占地、换茬快、环境清洁、产品无污染和生长好、品质优、色鲜味美等优点,为花卉蔬菜、粮食以及水果生产的工业化、自动化开辟了广阔的前景。

一、实践目的

通过对草莓的无土栽培实践活动,使我们初步掌握无土栽培的技术,懂得利用水培法来确定植物必须矿质元素的原理和矿质元素对植物的生理作用,同时也培养了同学们的学习兴趣和实践能力。

二、实践原理

植物根从土壤溶液中吸收水分和无机盐,土壤颗粒主要起着固着作用。根据这一原理,将植物生活所需的无机盐按一定比例配成营养液进行作物的无土栽培。

三、实践方法

采用与泥土盆栽草莓相对照试验,盆栽草莓使用一般的菜园土作固着物,施用化肥和农家肥,进行水肥管理。

四、实践器材

无土花盆(双层塑料套盆或采用罐头瓶、硬泡沫塑料做定植板也行)、草莓苗、营养液原液、天平、洗净的碎石或蛭石、温度计等。

五、 试验与管理

1、试验时间:1997年9月-1998年5月;1998年9月-1999年5月

2、试验地址:校生物园

3、营养液原液:经试验得知,表1为最佳配方。

4、栽培方法:选择无病虫害、植株矮壮、具4-5片叶、顶芽饱满的壮苗,洗净根上泥土后,定植在无土花盆的上盆中,用碎石子或蛭石作固着物,下盆中盛清水,待长出新根后(1周左右)将清水倒掉,换上培养液。

高中生物论文篇2

人类早期的活动能力、也就是破坏自然的能力很弱,最多只能引起局部地区小气候的改变,所以几百万年间人与自然还能相安无事。但是工业革命以来情况发生争剧变化。工业化意味着大量燃烧煤和石油,意味着向地球大气排放巨量的废气。其中二氧化碳气体造成大气温室效应,使全球变暖、极冰融化、海平面上升;二氧化硫和氮氧化物可以形成酸雨;氯氟烃气体能破坏高空臭氧层,造成南极臭氧洞和全球臭氧层变薄。此外,工业化排放的污染气体也使人类聚居的城市成了浓度特高的大气污染岛……人类在发展经济、提高生活质量的同时也闯下了弥天大祸。不少灾害看起来似乎是天灾,而实际上却往往是属于人类自己造成的人祸。被破坏的地球大气正在对人类进行可怕的报复,大自然是绝不会因为人类的无知而原谅人类的。

1992年6月,世界各国元首、政府首脑云集巴西里约热内庐,在联合国《气候变化框架公约》上签字。为什么气候变化这样一个普普通通的科学问题,会变得如此令人关注?

原来,工业革命以来,由于人类大量燃烧化石燃料和毁灭森林,使全球大气中二氧化碳(CO2)含量在百年内增加了25%。如果按目前CO2浓度的增加速度,到2100年大气中CO2含量将增加一倍。据联合国发布的评估报告,那时全球平均气温会比现在上升1.0~3.5℃,这将引起极冰融化、海平面上升15~95厘米,从而淹没大片经济发达的沿海地区,还可能引起其他一系列严重问题。世界各国政府开始重视这种状况及其危害后果,共同商讨削减CO2排放量的问题。

什么叫温室效应

全球的地面平均温度约为15℃。如果没有大气覆盖,根据地球获得的太阳热量和地球向宇宙空间放出的热量相等的原理,可以计算出地球的地面年均温度为-18℃。这33℃的温差就是大气像被子一样保护地球造成的。这就是温室效应。

宇宙中任何物体都辐射电磁波。物体温度越高,辐射的波长越短。太阳表面温度约6000K,它发射的电磁波的波长很短,称为太阳短波辐射(其中包括从紫到红的可见光)。地面在接受太阳短波辐射而增温的同时,也时时刻刻向外辐射电磁波而冷却下来。地球发射的电磁波因温度较低而具有较长的波长,称为地面长波辐射。短波辐射和长波辐射在经过地球大气时的遭遇是不同的:大气对太阳短波辐射来说几乎是透明的,而它却强烈吸收地面长波辐射。大气在吸收地面长波辐射的同时,它自己也向外辐射波长更长的长波辐射(因为大气的温度比地面更低)。其中向下到达地面的部分称为逆辐射。地面接受逆辐射后就会升温,这也可以说是大气对地面起到了保温作用。这就是大气温室效应的原理。

地球大气的这种保温作用,很类似于种植花卉的暖房顶上的玻璃(温室效应也可称为暖房效应或花房效应),因为玻璃也具有透过太阳短波辐射和吸收地面长波辐射的保温功能。

温室效应源自温室气体

我们知道,并不是大气中的每种气体都会强烈吸收地面长波辐射的。地球大气中起温室作用的气体称为温室气体,主要有二氧化碳、甲烷、臭氧、一氧化二氮、氟里昂以及水汽等。它们几乎吸收地面发出的所有波长的长波辐射,只有一个很窄的区段吸收很少,这个区段被称为“盲区”。地球主要通过这个盲区把从太阳获得的热量中的70%又以长波辐射形式返还宇宙空间,从而维持地面温度不变。我们所说的温室效应,主要是指由于人类活动增加了温室气体的数量和品种,使这盲区即能返回宇宙空间的70%的热量的数值下降,使留下的余热增多而使地球变暖的情况。

不过,CO2等温室气体虽然吸收地面长波辐射的能力很强,但它们在大气中的数量却极少。如果把压力为一个大气压、温度为0℃的大气状态称为标准状态,那么把地球整个大气层压缩到这个标准状态,它的厚度是8000米。目前大气中CO2的含量是355ppm即百万分之355(ppm为百万分之一),把它换算到标准状态,就是2.8米厚。在8000米厚的大气中就占这2.8米厚的这一点点。甲烷含量是1.7ppm,相应是1.4厘米厚。臭氧浓度是400ppb(ppb为ppm的千分之一)换算后只有3毫米厚。一氧化二氮是310ppb,2.5毫米。氟里昂有许多种,但大气中含量最多的氟里昂12也只有400ppt(ppt是ppb的千分之一),换算到标准状态只有3微米。由此可见大气中温室气体是极少的。正因为如此,所以人为释放的温室气体如不加限制,很容易引起全球迅速变暖。

早在1938年,英国气象学家卡林达在分析了19世纪末世界各地零星的CO2观测资料后,指出当时CO2浓度已比世纪初上升了6%,并指出从上世纪末到本世纪中叶全球存在变暖倾向,在世界上引起了很大反响。为此,美国斯克里普斯海洋研究所的凯林于1958年在夏威夷的冒纳罗、亚山海拔3400米的地方建立起了观测所,开始了大气中CO2含量的精密观测。夏威夷位于北太平洋中部,几乎未受陆地大气污染的影响,观测结果有相当高的可靠性。

从冒纳罗亚山观测到的1958年4月到1991年6月大气中CO2浓度的变化曲线可以看出1958年时大气中CO2含量不过315ppm左右,而1991年已经达到了355ppm。问题的严重性还在于,人类每年燃烧55亿吨化石燃料(每吨约产生4吨CO2)中,大约只有一米进入了大气,其余一米主要被海洋和陆地植物所吸收。一旦海洋中CO2达到饱和,大气中CO2含量将成倍上升。从图上还可发现CO2含量还有季节变化,冬夏可以相差6ppm。这主要是由于北半球广阔大陆上植被冬枯夏荣的影响,因为植物在夏季大量吸收CO2因而使大气中CO2浓度相对降低。

根据对南极和格陵兰大陆冰盖中密封的气泡中空气的CO2浓度测定,古代大气中CO2含量一直比较稳定,大体是280ppm左右。只是从18世纪中叶,即工业革命前后开始逐步上升。人类用了240年时间,使大气中CO2浓度从280ppm上升到355ppm。

甲烷是仅次于CO2的重要温室气体。它在大气中的浓度虽比CO2少得多,但增长率却大得多。据联合国政府的气候变化委员会(IPCC)1996年发表的第二次气候变化评估报告的资料(简称《报告》),从1750~1990年共240年间CO2增加了30%,而同期甲烷却增加了145%。甲烷也称沼气,是缺氧条件下有机物腐烂时产生的,例如水田、堆肥和畜粪等都会产生沼气。一氧化二氮又称笑气,因为呼入一定浓度的这种气体后会引起面部肌肉痉挛,看上去像在发笑一样。它主要是由于使用化肥、燃烧化石燃料和由生物体所产生的。大气中的臭氧含量,在平流层中虽有减少,但在对流层中是增加的。氟里昂气体是氯、氟和碳的化合物,它在自然界里本不存在,完全是人类制造出来的。由于它的溶点和沸点都比较低,不燃、不爆、无臭、无害、稳定性极好,广泛用来生产制冷剂、发泡剂和清洁剂等。地球大气中浓度最高的氟里昂12和氟里昂11含量虽都极少,但这些年增长率却很高,均达到年增5%。根据1987年国际《蒙特利尔议定书》,它在大气中的浓度将在21世纪初开始逐渐减少。

应当说明,CO2以外的其他温室气体在大气中的浓度虽比CO2小得多,有的要小好几个量级,但它们的温室效应作用却比CO2强得多,它们对大气温室效应的作用,根据IPCC第二次《报告》,都只比CO2低一个量级。这是值得注意的。

温室效应的后果

如前所述,工业革命前大气中CO2含量是280ppm,如按目前增长的速度,到2100年将增加到550ppm,即几乎增加一倍。全世界的许多气象学家都在努力研究,CO2含量增加一倍以后,到2100年全球的平均气温会增高多少?

目前采用的具体办法是,根据大气运动规律和物理状态变化规律,设计成数值模式进行计算。但由于人们对大气运动变化规律的认识还不够完善,采取的简化设计办法也不同,因而各个模式的计算结果常相差很大。为此80年代美国科学院组织了评估委员会,对这些模式的结果进行研究和综合评诂,最终得出CO2倍增后全球平均气温将上升1.5~4.5℃。这就是对本问题最有权威的组织——联合国IPCC第一次《报告》中采用的数字。

近年来,气候模式的模拟能力有了重大改进,这主要是考虑了大气中气溶胶(空气中悬浮的微小颗粒)的作用。因为在燃烧化石燃料放出CO2的同时也释放了巨量的硫化物等气溶胶。这种气溶胶颗粒会遮挡部分阳光使之无法到达地面,使地面气温降低,起到冷却作用。其数值据IPCC估计可达-0.5瓦/平方米,即相当于CO2增温效应(+1.56瓦/平方米)的1/3,比甲烷的增温效应(+0.47瓦/平方米)还略大。主要根据这个改进,IPCC1996年公布的第二个《报告》中,把2100年CO2倍增后全球平均气温的升温值从1.5~4.5℃,修改为1.0~3.5℃。评估报告中还指出,由于海洋的巨大热惯性,到2100年这个增温值中大约只有50~90%得以实现。

模式计算结果还说明,全球平均增温1.0~3.5℃并不均匀分布于世界各地。赤道和热带地区不升温或几乎不升温,升温主要集中在高纬度地区,数量可达6~8℃甚至更大。这一来引起另一严重后果,即两极和格陵兰的冰盖会发生融化,引起海平面上升。北半球高纬度大陆的冻土带也会融化或变薄,引起大范围地区沼泽化。还有,海洋变暖后海水体积膨胀也会引起海平面升高。IPCC的第一次评诂报告中预计海平面上升20~140厘米(相应升温1.5~4.5℃),第二次评估报告中修改为15~95厘米(相应升温1.0~3.5℃),最可能值为50厘米。即比第一次评估结果降低了约25%。IPCC的第二次评诂报告还指出,从19世纪末以来的百年间,由于全球平均气温上升了0.3~0.6℃,全球海平面相应也上升了10~25厘米。

全球海平面的上升将直接淹没人口密集、工农业发达的大陆沿海低地地区,后果十分严重。1995年11月在柏林召开的联合国《气候变化框架公约》缔约方第二次会议上,44个小岛国组成了小岛国联盟,为他们的生存权而呼吁。

此外,研究结果还指出,CO2增加不仅使全球变暖,还将造成全球大气环流调整和气候带向极地扩展。包括我国北方在内的中纬度地区降水将减少,加上升温使蒸发加大,气候将趋于干旱化。大气环流的调整,除了中纬度地区干旱化之外,还可能造成世界其他地区气候异常和一些灾害,例如低纬度台风强度将增强,台风源地将向北扩展等。气温升高还会引起或加剧一些传染病流行。以疾为例,过去5年中世界痰疾发病率已翻一两番,现在全世界每年约有5亿人得痰疾,其中200多万人死亡。

但是,温室效应也并非全是坏事。最寒冷的高纬度地区增温最大,农业区将向极地大幅度推进。CO2增加也有利于植物光合作用而直接提高有机物质产量。还有的专家指出,在我国和世界历史上温暖期多是降水较多、干旱区退缩的繁荣时期。

在大气温室效应这个问题上,也有不同意见。有些科学家认为:目前数值模式还不成熟,计算结果过于夸大;百年升高0.3~0.6℃属于正常气候变化,不能证明是大气温室效应所造成。这是少数人的意见。

尽管如此,对于目前大气中CO2浓度和全球温度正迅速增加,以及温室气体增加会造成全球变暖的原理,都是没有争论的事实。我们如果等到问题已发展到了可以明显感知的水平,就往往难以逆转。因此必须引起高度重视,以便采取对策,保护好人类赖以生存的大气环境。

全球对策

大气温室效应造成的全球变暖,对策主要有以下3个方面。

第一方面是减少目前大气中的CO2。最切实可行的办法是广泛植树造林、加强绿化、停止滥伐森林;用太阳光的光合作用大量吸收和固定大气中的CO2。还有利用化学反应来吸收CO2的办法,但在技术上都不成熟,经济上更难大规模实行。

第二方面是适应。这是无论如何必须考虑的问题。例如除了建设海岸防护堤坝等工程技术措施以防止海水入侵外,有计划地逐步改变当地农作物的种类和品种,以适应逐步变化的气候。日本北部因为夏季过凉,过去并不种植物稻,即使种了产量也很低。由于培育出了抗寒抗逆品种,现在即使在最北的北海道也不仅能长水稻,而且产量还很高。这是一个很好的例子。气候变化是一个相对缓慢的过程,只要能及早预测出气候变化趋势,我们是能找到适应对策并顺利实施的。

第三方面是削减CO2的排放量。这是在1992年巴西里约热内卢世界环境与发展大会上,各国领导人共同签署的《气候变化框架公约》的主要目的(框架是指比较原则,有待进一步具体化的意思)。公约要求在2000年发达国家应把CO2排放量降回到1990年水平,并向发展中国家提供资金和转让技术,以帮助发展中国家减少CO2的排放量。近百年来全球大气中CO2浓度的迅速升高,绝大部分是发达国家排放造成的。发展中国家首先是要脱贫、要发展,发达国家有义务这样做。

由于公约是框架性的,并没有约束力。而削减CO2排放量直接影响到发展中国家的经济利益,因此有的发达国家不仅没有减排,还在增排,现在看来,2000年根本不可能降到1990年水平。在1997年12月11日结束的联合国气候变化框架公约缔约方第3次大会(日本京都会议)上发展中国家和发达国家展开了尖锐紧张的斗争。最后,发达国家作出让步,难产的《京都议定书》终于得到通过。议定书规定,所有发达国家应在2010年把6种温室气体(CO2、一氧化二氮、甲烷和3种氯氟烃)的排放量比1990年水平减少5.2%。这虽与发展中国家的要求的到2010年减少15%和到2020年减少20%的目标相差很大,但毕竟这是一份具有约束力的国际减排协议。

高中生物论文篇3

探究性学习是学生在老师的指导下主动地去探究问题的学习模式。在探究性学习中,学生以类似科学研究的方式发现问题,主动地去获取知识、应用知识,其目的是改变学生的学习方式,引导学生主动参与、乐于探究、勤于动手,培养学生自我获取知识的能力。探究性学习这一新的学习模式,要求师生改变传统的教师、课本、教室三中心教学观念,改变传授型的教学方式,以适应以学生发展为本。笔者是一名中学生物教师,除了在生物课堂上实施探究性学习来引导学生主动参与之外,为适应探究性活动的需要,我在生物课外科技活动中实施探究性学习的教学方法上也作了一些探索和尝试。

一、创设探究性问题情境,拓宽探究思路

传统的生物课外活动教学方法与一般的校内课程一样,也是传授型的。比如,教师先向学生讲解如何制作植物叶脉标本、腊叶标本、透明浸制标本、蝴蝶标本等,然后示范。接下来学生依样画葫芦,做得一丝不差的就是最好,学生不必动脑筋。其效果是学生思维呆板,活动结果都在预定之中,学生自然少有兴奋、更无创新。

为改变这一状况,笔者在“探究植物叶脉标本的制作”是这样创设问题情境的:河沟里往往有一些烂叶片,捞起来用水一冲,也可得到叶脉标本,这是为什么?能否考虑用浸泡的方法来腐烂叶肉?浸泡的溶液会有哪些?浸泡的过程须多长时间?哪些植物叶片适合用浸泡的方法来制取叶脉标本?这一下,学生的思路开阔了,思维的火花闪现了,他们调动了原有的知识结构去探究该情境中的问题,并积极地从多角度去思考问题、发现问题。众说纷纭,兴奋异常!有的说用自来水来浸泡树叶、有的说用池塘水浸泡、有的说用食醋溶液浸泡、有的说用洗衣粉溶液浸泡、有的说用碱溶液浸泡等等。这些方案体现了学生思维的广阔性,体现了问题情境创设的重要性,教师应及时鼓励,以拓宽学生的思路。

对于学生提出的各种制作方法,笔者不以好坏来论断,而是依据基木原理,就其可能的结果与学生一起讨论,加以分析、比较、筛选,鼓励学生用自己的实验结果来得出结论,让学生们根据自己的想法去进行制作。其制作结果当然再也不会是千篇一律的了!有的人成功了!也有的人失败了!通过探究活动,最终得出池塘水和自来水是理想的浸泡溶液,白玉兰叶片也是理想的材料。学生对自己设计方法并通过摸索进行制作兴趣十足,对做成的标本欢喜有余。在此基础上,我又引导学生思考如何开发叶脉标本的工艺品。这样经过多次活动以后,学生体验到了探究性学习的乐趣和甜头,对探究性学习产生了兴趣,逐步养成了善于提问、勤于思考、乐于动手的良好习惯。

二、塑造鲜明的探究个性

从某种意义上说,没有个性就没有探究,探究过程往往表现出鲜明的个性。教师应该承认学生的个体差异,尊重学生的不同兴趣爱好,同时深入了解每个学生的性格特征、兴趣爱好及特长。在此基础上实施个性教育,引导学生发展具有探究性的人格特性,鼓励并积极创造条件帮助学生发挥特长,给学生留有更大的选择余地和自由发展空间,塑造鲜明的探究个性。

(一)只有科学方法,没有标准答案

在生物课外探究性活动教学中,对学生们强调只有科学方法,没有标准答案。对各种问题的讨论只重视你思考问题的科学性、陈述问题的逻辑性,不强调结果的对或错。这样,打消了不少学生怕答错问题让同伴笑话的顾虑,引导学生进行独立思考,逻辑推理,把精力放在寻找论据上,广开了“言路”。学生的思路渐渐活跃起来,敢于各抒已见,慢慢地进入了主体角色。为此,笔者在课外科技活动的辅导过程中,只要学生能提出自己的想法,而不完全局限于课本,就及时予以充分肯定和鼓励,尝试塑造鲜明的探究个性。

例如,柑桔是日常生活中常见的材料,用柑桔皮来喷杀蚂蚁也是小孩子常玩的游戏,在辅导科技活动时,有位同学突发奇想:能否用大剂量的柑桔油来喷杀蟑螂?在这种探究性思维的驱使下,我因势利导,先讲述柑桔油致死昆虫的原因,然后引导学生大胆尝试、大胆探究。同学们分别用类似的植物材料如大蒜、洋葱等来喷杀蟑螂,一个个兴致勃勃,没有被从书上找不到答案所吓倒。几经周折、几经苦难,消灭蟑螂的环保型材料“诞生”了,在此过程中,不仅有一次次的探究实验,还把环保型灭蟑液在小白鼠身上做实验(以防对人体有毒害作用),最后在家庭中试用成功。一系列的探究过程完全符合科学探究的基本思路,同学们的科学意识提高了。

(二) 培养学生动手动脑

探究性学习必须给学生提供既用脑又用手的机会,让学生动脑动手亲身经历问题探究的实践过程,从而获得研究的初步体验,加深对自然、社会等各种问题的思考与感悟,激发起学生探索问题的求知欲和体现自身价值的创新精神,并养成独立思考和重视解决实际问题的学习习惯。

在生物学课外探究性活动中,笔者注意让学生既用脑又用手,在课程里安排了一些小发明、小创造等既用脑又用手的活动内容。同时注意诱导他们做好用脑和用手之间的衔接,在动手的过程中培养学生的探究个性。

在生物科技活动中,尝试让学生设计一顶适于野外捕捉昆虫用的帽子,要求该帽子集捕虫用具于一身,做到一帽多用。具体的设计方案由学生自定,其中有一个小组是这样设计的:普通的草帽用迷彩布装饰,外观大方,帽的上方装有捕虫网,捕虫网的柄还可当拐杖用,帽的下方连有雨衣,随时装卸,帽的边缘缝有五个带有拉链的口袋,内装放大镜、手电筒、指南针、地图、笔、笔记本、口罩和白纸等一些捕虫用的辅助用具,并取名为《神奇的捕虫帽》。这样,学生通过用脑 —动手—再用脑—再动手反复交替,体会到有时想来很容易的操作问题,实际做起来不简单;反之,有的思考时很复杂的步骤,在实际应用熟练后,跳跃几步即可到位。强调动脑又动手、动手又动脑的教学方法,其结果不但灵活了学生们的双手,还活跃了大脑,给了他们跳跃式思维的体验,为日后的解决实际问题能力和创新能力提供了基础。

通过以上教学方法不但使每个学生体验到探究性活动的魅力和乐趣,体验到思维方法和实践操作的重要性,也培养了学生细心认真、凡事要思考的良好习惯,养成尊重科学的道理和重视实践出真知的科学素质。探究性学习是一种全新的学习方式,在探究性学习中,一个好的教师要采取科学有效的教学策略,精心设计一个让学生感到无忧无虑的空间、一个可以探索、表达、分享思想的自我完善的空间,牢牢记住和把握“学生为主体,教师为主导”这一教学原则,唯有如此,才能进一步提高探究性学习的实效性,才能使探究性学习这一重要课程理念发扬光大。

高中生物论文篇4

摘要 生物芯片是便携式生物化学 分析 器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用生物芯片可进行生命 科学 和医学中所涉及的各种生物化学反应,从而达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片 发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。本文阐述了生物芯片技术在加工制备、功能和 应用 方面的近期 研究 进展。

关键词:生物芯片,缩微芯片实验室,疾病诊断,基因表达

人类基因组计划的目标是在2005年完成对30亿个人体基因组DNA碱基的序列测定,现在通过使用更高级的毛细管阵列测序仪和商业操作,使该计划有望提前完成。因此,人们现已开始利用人类基因组计划中所发现的已知基因对其功能进行研究,亦即把已知基因的序列与功能联系在一起的功能基因组学研究。另外,与疾病相关的研究已从研究疾病的起因向探索发病机理方面转移,并从疾病诊断向疾病易感性研究转移。由于所有上述这些研究都与DNA结构、病理和生理等因素密切相关,因此许多国家现已开始考虑在后基因组时期,研究人员是否能用有效的硬体技术来对如此庞大的DNA信息以及蛋白质信息加以利用。为此,先后已有多种解决方案问世,如DNA的质谱分析法[1]、荧光单分子分析法[2]、阵列式毛细管电泳[3]、杂交分析[4]等。但到 目前 为止,在对DNA和蛋白质进行分析的各种技术中,发展最快和应用前景最好看的技术当数以生物芯片技术为基础的亲和结合分析、毛细管电泳分析法[5]和质谱分析法。此外,在此基础上,通过与采用生物芯片技术和样品制备 方法 (芯片细胞分离技术[6]和生化反应方法(如芯片免疫分析[7]和芯片核酸扩增[8])相结合,许多研究机构和 工业 界都已开始构建所谓的缩微芯片实验室。建立缩微芯片实验室的最终目的是将生命科学研究中的许多不连续的分析过程,如样品制备,化学反应和分离检测等,通过采用象集成电路制作过程中的半导体光刻加工那样的缩微技术,将其移植到芯片中并使其连续化和微型化。这些当年将数间房屋大小的分离元件 计算 机缩微成现在只有书本大小的笔记本式计算机有异曲同工之效。用这些生物芯片所制作的具有不同用途的生化分析仪具有下述一些主要优点,即分析全过程自动化、生产成本低、防污染(芯片系一次性使用)、分析速度可获得成千上万倍的提高、同时,所需样品及化学药品的量可获得成百上千倍的减少、极高的多样品处理能力、仪器体积小、重量轻、便于携带。这类仪器的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。因此,它已广为各国学术界和工业界所瞩目[9]。

1 、生物芯片的微加工制备

生物芯片的加工借用的是微 电子 工业和其他加工工业中比较成熟的一些微细加工(microfabrication)工艺(如:光学掩模光刻技术、反应离子刻蚀、微注入模塑和聚合膜浇注法),在玻璃、塑料、硅片等基底材料上加工出用于生物样品分离、反应的微米尺寸的微结构,如过滤器、反应室、微泵、微阀门等微结构。然后在微结构上施加必要的表面化学处理,再在微结构上进行所需的生物化学反应和分析。

生物芯片中目前发展最快的要算亲和结合芯片(包括DNA和蛋白质微阵列芯片)。它的加工除了用到一些微加工工艺以外,还需要使用机器人技术。现在有四种比较典型的亲和结合芯片加工方法。一种是Affymetrix公司开发出的光学光刻法与光化学合成法相结合的光引导原位合成法[10]。第二种方法是Incyte pharmaceutical公司所采用的化学喷射法,它的原理是将事先合成好的寡核苷酸探针喷射到芯片上指定的位置来制作DNA芯片的。第三种是斯坦福大学所使用的接触式点涂法。该方法的实现是通过使用高速精密机械手所带的移液头与玻璃芯片表面接触而将探针定位点滴到芯片上的[11]。第四种方法是通过使用四支分别装有A、T、G、C核苷的压电喷头在芯片上作原位DNA探针合成的[12]。

2、 生物芯片举例

生物芯片是缩小了的生物化学分析器,通过芯片上微加工获得的微米结构和生物化学处理结合,便可将成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用芯片可进行生命科学和医学中所涉及的各种生物化学反应,以达到对基因、抗原和活体细胞等进行测试分析的目的。通过分析可得到大量具有生物学、医学意义的信息。生物化学反应和分析过程通常包括三个步骤:

1、样品制备;

2、生物化学反应;

3、检测和数据分析处理。将其中一个步骤或几个步骤微型化集成到一块芯片上就能获得具有特殊功能的生物芯片,例如用于样品制备的细胞过滤器芯片和介电电泳芯片、用于基因突变检测和基因表达的DNA微阵列芯片和用于药物筛选的高通量微米反应池芯片等。现在,世界各国的科学家们正致力于将生化分析的全过程通过不同芯片的使用最后达到全部功能的集成,以实现所谓的微型全分析系统或缩微芯片实验室。使用缩微芯片实验室,人们可以在一个封闭的系统内以很短的时间完成从原始样品到获取所需分析结果的全套操作。

2.1 样品制备芯片

针对DNA分析,其制备过程通常要经过细胞分离、破胞、脱蛋白等多方面的工作,最后得到纯度足够高的待检DNA。目前在细胞分离方法上较突出的有过滤分离(根据生物颗粒的尺寸差异进行分离)和介电电泳分离(利用在芯片上所施加的高频非均匀电场使不同的细胞内诱导出偶电极,导致细胞受不同的介电力作用,而从样品中分离出来)等;芯片中的破胞方法有芯片升温破胞、变压脉冲破胞,以及化学破胞等。在捕获DNA方面,CephEid公司应用湿法蚀刻和反应离子蚀刻/等离子蚀刻等工艺在硅片上加工出含有5000个高200微米直径20微米的具有细柱式结构的DNA萃取芯片,专门用于DNA的萃取[13]。

2.2 生物化学反应芯片

由于目前所用检测仪器的灵敏度还不够高,因此从样品中提取的DNA在标记和应用前仍需用PCR这样的扩增复制技术复制几十万乃至上百万个相同的DN段。

目前,在芯片中进行核酸扩增反应获得成功的有宾夕法尼亚大学研究小组[8,14],美国劳伦斯-利物摩国家实验室[15]和Perkin-Elmer公司[16]。宾夕法尼亚大学研究小组所做的扩增反应都是在硅-玻璃芯片中进行的,芯片的外部加热和冷却采用的是计算机控制的帕尔帖电-热器。在对芯片表面进行惰性处理后,亦即在硅片表面生长一层2000埃的氧化硅之后,他们成功地在硅-玻璃芯片中完成了一系列不同的核酸扩增反应,例如RT-PCR、LCR、多重PCR和DOP-PCR。由劳伦斯-利物摩国家实验室加工的硅芯片所采用的加热方式是芯片内置的薄膜多晶硅加热套,其升降温的速度很快。Perkin-Elmer公司的PCR反应则是在塑料芯片上完成的。伦敦帝国理工大学的研究者研制了一种样品可在不同温度的恒温区间内连续流动的PCR芯片[17]。上述所有工作都是用事先提纯了的DNA或RNA作为扩增反应的底物来完成的。为了将样品制备和扩增反应集成为一体,宾夕法尼亚大学研究小组最近成功地在坝式微过滤芯片中直接对分离所得的人白细胞通过升温方式胞解后所释放的DNA进行了扩增,这是世界上首例将样品制备和扩增反应集成为一体的研究成果[14]。

2.3 检测芯片

2.3.1 毛细管电泳芯片

芯片毛细管电泳是1983年由杜邦公司的Pace开发出来的[18]。随后,瑞士的Ciba-GEIgy公司和加拿大的Alberta大学合作利用玻璃芯片毛细管电泳完成了对寡核苷酸的分离[19]。首次用芯片毛阵列电泳检测DNA突变和对DNA进行测序的是由加利福尼亚大学伯格利分校Mathies领导的研究小组完成的[20,21]。通过在芯片上加上高压直流电,他们在近两分钟的时间内便完成了从118bp到1353bp的许多DN段的快速分离。此外,Mathies的小组与劳伦斯-利物摩国家实验室Nothrup的研究小组合作,报道了首例将核酸扩增反应与芯片毛细管电泳集成为一体所作的多重PCR检测工作[22]。宾夕法尼亚大学Wilding的小组与Ramsey的小组一道用芯片毛细管电泳对芯片中扩增得到的用于杜鑫-贝克肌萎缩诊断的多条DN段进行分离也获得了成功[14]。其他用 芯片毛细管电泳检测突变的外国公司和学术机构有Perkin-Elmer公司、Caliper technologies公司、Aclara biosciences公司和麻省理工等。

2.3.2 DNA突变检测芯片

dNA之所以能进行杂交是因为核苷A和T、G和C可同时以氢键结合互补成对。许多经典的分子生物学方法如桑格DNA测序法和PCR等都是以此为基础的。最近出现的几项技术,如用光刻掩膜技术作光引导原位DNA合成[23]、电子杂交技术[24]、高灵敏度激光扫描荧光检测技术[25]等,使以杂交为基础的应用有了长足的改善。最近的一些 英文 权威刊物对应用芯片杂交技术检测突变作了报道。Hacia等人采用由96000个寡核苷酸探针所组成的杂交芯片,完成了对遗传性乳腺癌和卵巢肿瘤基因BRCA1中外显子上的24个异合突变(单核苷突变多态性)的检测。他们通过引入参照信号和被检测信号之间的色差分析使得杂交的特异性和检测灵敏度获得了提高[26]。另外,Kozal等人用高密度HIV寡核苷酸探针芯片对HIV病株的多态性作了分析[27]。Cronin等人用固化有428个探针的芯片对导致肺部囊性纤维化的突变基因进行了检测[28]。用生物芯片作杂交突变检测的美国公司有贝克曼仪器公司、Abbot laboratory、Affymetrix、Nanogen、Sarnoff、Genometrix、Vysis、Hyseq、Molecular dynamics等;英美学术机构有宾夕法尼亚大学、贝勒医学院、牛津大学、Whitehead institute for Biomedical Research,海军研究室,Argonne国家实验室等。

通过杂交分析DNA的另一应用技术是重复测序。那么,重复测序是怎么工作的呢?首先,人们将长度为8-20个核苷的探针合成并固定到指甲盖大小的硅芯片或玻璃芯片上。当含有与探针序列互补的DNA被置于联有探针的芯片之后,固化探针就会通过与其序列互补的DN段杂交而结合[10]。通过使用带有计算机的荧光检测系统对“棋盘”每个格子上的荧光强弱及根据每个格子上已知探针的序列进行分析与组合就可得知样品DNA所含有的碱基序列。最近美国的Science杂志对应用芯片杂交技术测序作了报道。Chee等人在一块固化有135000个寡核苷酸探针(每个探针长度为25个核苷)的硅芯片上对长度为16.6kbp的整个人线粒体DNA作了序列重复测定。每个探针之间的空间间隔为35微米。测序精度为99%。另外Hacia还报道了一种微测序分析法(minisequencing-based assays)为检测所有可能的碱基序列变化提供了强有力的手段。此方法中需要将不同颜色荧光染料标记的四种ddNTP,加入到引物的酶促反应中,微阵列上固化的寡核苷酸用作酶促反应的引物,靶序列作为模板,可检测到靶序列上的碱基变化。用生物芯片从事杂交测序的美国公司有Affymetrix和Hyseq[29]。

2.3.3 用作基因表达分析的DNA芯片

随着人类基因组计划的顺序进行,越来越多的能够表达的人基因序列以及引发疾病和能预测疾病的各种突变正在为人们逐渐认识。为了能够同时对多个可能的遗传突变进行搜寻、加快功能基因组学研究的进程,人们现已把越来越多的注意力放到了能同时提供有关多个基因及其序列信息的所谓并行分子遗传学分析(parallel molecular genetic analysis)方法上。功能基因组学所研究的是在特定组织中、发育的不同阶段或者是疾病的不同时期基因的表达情况。因此它的要求是要能在同一时刻获得多个分子遗传学分析的结果。譬如,许多疾病引发基因可能会有数以百计的与表征有关的特定突变,因而,要求能有同时筛检这些突变的有效方法。另外,任何一个细胞中都会有上千个基因在表达。而细胞间基因表达的差异往往能反应出这些细胞是发育正常还是在朝恶性肿瘤细胞方向发展。采用芯片技术利用杂交对基因表达进行分析的好处是它能用很少的细胞物质便能提供有关多基因差异表达的信息,从而给疾病诊断和药物筛选提供前所未有的信息量[30]。Lockhart等人采用固化有65000个不同序列的长度为20个核苷的探针芯片,定量地分析了一个小鼠T细胞线中整个RNA群体内21个各不相同的信使RNA。这些专门设计的探针能与114个已知的小鼠基因杂交。分析发现 在诱发生成细胞分裂后,另外有20个信使RNA的表达也发生了改变。检测结果表明该系统对RNA的检出率为1:300000,对信使RNA的定量基准为1:300[32]。Wang等人在研究表鬼臼毒素吡喃葡糖苷(etoposide)诱导的细胞程序性死亡时,利用DNA芯片技术,制备了一次可检测6591种人细胞信使RNA的寡聚核苷酸微阵列,检测到诱导后的细胞内有62种信使RNA的量发生了变化。通过挑选12个与诱导作用有关的基因作进一步研究,它们发现了2个新的p53靶基因[33]。DeRisi等人将一个恶性肿瘤细胞线中得到的870个不同的cDNA探针通过机械手“刷印”至载玻片上以观察癌基因的表达情况。在比较两个标有不同荧光标记的细胞信使RNA群的杂交结果之后,他们对引入正常人染色体后肿瘤基因受到抑制的细胞中的基因表达结果进行了分析[34]。另外,Shoemaker等人报道了一种利用生物芯片来确定许多新近发现的酶母基因的生物功能的所谓分子条形编码技术。这种技术的好处是它能让我们以并行的方式定量地分析很复杂的核酸混合物[35]。Lueking等人最近采用蛋白质微阵列技术,把作为探针的蛋白质高密度地固定在聚双氟乙烯膜(polyvinylidene difluoride)上,并检测到了10pg的微量蛋白质测试样。对92个人cDNA克隆片段表达的产物进行检测,用单克隆技术作平行分析,证实了假阳性的的检出率低。由于蛋白质微阵列技术不受限于抗原-抗体系统,故能为高效筛选基因表达产物及研究受体-配体的相互作用提供一条新的有效途径[36]。

2.4 缩微芯片实验室

生物芯片 发展的最终目标是将从样品制备、化学反应到检测的整个 分析 过程集成化以获得所谓的微型全分析系统或称缩微芯片实验室。1998年6月,Nanogen公司的程京博士和他的同事们首次报道了用芯片实验室所实现的从样品制备到反应结果显示的全部分析过程。他们用这个装置从混有大肠杆菌的血液中成功地分离出了细菌,在高压脉冲破胞之后用蛋白酶K孵化脱蛋白,制得纯化的DNA,最后用另一块 电子 增强的DNA杂交芯片分析证实提取物是大肠杆菌的DNA。这是向缩微实验室迈进的一个成功的突破[37]。 目前 ,含有加热器、微泵微阀、微流量控制器、电子化学和电子发光探测器的芯片已经研制出来了,而且,也出现了将样品制备、化学反应和分析检测部分结合的芯片(例如,样品制备和PCR[38];竞争免疫测定和毛细管电泳分离[39])。相信不久的将来,包含所有步骤的缩微芯片实验室将不断涌现。

3 、结尾

经过近十年的不懈努力,生物芯片技术发展至今已经开始对生命 科学 研究的许多领域带来冲击甚至革命。以美国为首的西方发达国家在该领域已经取得了令人眩目的成就。到现在,从样品制备、化学反应到检测的三个步骤已获得了部分集成,三个部分的全部集成已初现端倪。 中国 在这方面尚未起步,如果各方面重视,投入一定的人力和物力,相信不久的将来在该领域中我们也会占有一席之地的。

参考文献

1 Koster H,et al.Nature Biotechnology,1996;14:1123-1128.

2 Wilkerson CW,et al.Applied Physics Letter,1993;62:2030-232.

3 Hang XC,et al.Analytical Chemistry,1992;64:2149-2154.

4 Southern EM,et in Genetics 1996;12:110-118.

5 Pennisi E,Science 1996;272:1737.

6 Kricka LJ,et al.Journal of International Federation of&nbs p;Clinical Chemistry1994;6:54-59.

7 Kricka LJ,et al. Microfabricated Immunoassay Devices. In Principles & practice of Immunoassay (2ndEdition)。Edited by Price CP and Newman DJ, Macmillan press,London,1996.

8 Cheng J,et al.NuclEic Acids Research 1996;24:380-385.

9 Manz A,Chimia 1996;50:140-143.

10 Cheng J,Molecular Diagnosis 1996;1:183-200.

11 Cheng J,et al.Sample preparation in microstructured devices, in Manz a,Bechar H.(eds)“Microsystem technology in Chemistry and life Scence”,a special volume in 12 Topics in current Chemistry Springer,HEIdelberg,1998;215-231.

13 Markx G H,et al.Microbiology,1994;140:585-591.

14 Northrup MA,et al.Proceedings of Transducers’95, the Eighth International conference on Solid-State Sensors and Actuators 1995;764-765.

15 Cheng J,et al.Analytical Biochemistry 1998;257/2:101-106.

nothrup MA,et al.Proceeding of the 8thInternational Conference on Solid-State Sensors and actuators, and Eurosensors IX, 1995; 764-767.

16 Taylor TB, et al.Nucleic Acids Research 1997;25:3164-3168.

17 Mrtin UK, et al.Science 1998;280:1046-1048.

18 Pace SJ,US Patent 4,908,112,1990.

19 Manz A,et al.J.Choromatogr,1992;593:253-258.

20 Wooley aT,et al.Proc.Natl.Acad.Sci.USA,1994;91:11348-11352.

21 Woolley AT,et al.Anal.Chem,1997;68:4285-2186.

22 Woolley AT,et al.Anal.Chem,1996;68:4081-4086.

23 Fodor SPA ,et al.Science,1991;251:767-773.

24 Sosnowski RG,et al.Proc.Natl.Acad.USA,1997;94:1119-1123.

25 Kreiner t.,Rapid genetic sequence analysis using a DNA probe array system.Ame.Lab.,1996.

26 Hacia JG,et al.Nature Genet,1996;14:441-447.

27 Kozal MJ,et al.Nature Medicine,1996;2:753-759.

28 Cronin MT,et al.Human Mutation,1996;7:244-255.

29 Cheng J,et Diagnosis,1996;1:183-200.

30 Hacia J G,Nature genetics supplement,1999;21:42-47.

31 Scangos G,Nature Biotechnol,1997;15:1220-1221.

32 Lockhart DJ,Nature Biotechnol,1996;14:1675-1680.

33 Wang Y,et al.FEBS Letter,1999;445:269-273.

34 DeRisi J,et al.Nature Genet,1996;14:457-460.

35 Shoemaker DD, et al.Nature Genet, 1996;14:450-456.

36 Lueking A, et al.Anal Biochem,1999;270:103-111.

37 Cheng J,et al.Nature Biotechnology,1998;16:541-546.

38 Wilding P,et al.Anal.Biochem,1998;257:95-100.

3 9 McCormick RM,et al.Anal.Chem.1997;69:2626-2630

推荐访问: 高中生物 论文 高中生物论文可以写哪些方向 高中生物论文题目 高中生物论文1000字 高中生物论文范文 高中生物论文800字 高中生物论文2000字 高中生物论文怎么写 高中生物论文范文学生写 高中生物论文题目学生角度 高中生物论文题目100